

CRITIS'06

Intelligent Network-Based Early Warning Systems

CRITIS'06 August/September 2006

Karsten Bsufka

karsten.bsufka@dai-labor.de

Olaf Kroll-Peters

olaf.kroll-peters@dai-labor.de

Sahin Albayrak

sahin.albayrak@dai-labor.de

Agententechnologien in betrieblichen Anwendungen und der Telekommunikation

Overview

- 1. Motivation for CRITIS early warning system
- 2. Elements of an agent-based early warning system (A-EWS)
- 3. Interaction between agents
- 4. Important issues and conclusion

Motivation for CRITIS early warning system

- Untargeted malware is a threat to every critical infrastructure.
- Successful untargeted attacks and targeted attacks can affect other infrastructures due to the interdependencies between infrastructures.

Elements of an agent-based early warning system (A-EWS)

Sensors

- Security appliance (IDS, firewall, ...)
 Sensors
- Network Traffic Sensors
- Anomaly Sensors
- Attack Pattern Sensors

A-EWS Center

- EWS Coordinator (event and indicator collection and preprocessing)
- Raw threat data base
- Threat assessment and prediction (generate warnings and alerts)
- Threat state monitor

Sensors

⇒ Security appliance Sensors

- → Scan log files and/or receive events directly.
- → Interpret events: Forward relevant events.

⇒ Network Traffic Sensors

→ Analyses network traffic flow information.

⇒ Attack Pattern Sensors

→ Searches for attack patterns on different network layers.

⇒ Anomaly Sensors

→ Detection of non-typical behavior and classification of detection results.

DAI-Labor

A-EWS Center

⇒ EWS Coordinator

- → Receives raw events from sensors and warnings of local attacks, this may include information about attackers.
- → Attaches source information to events and warnings.
- → Attaches a priority to events and warnings.

⇒ Event and indicator data base

→ Stores and manages stored events and warnings.

AIOIT

A-EWS Center

⇒ Threat assessment and prediction

- → Responsible for creating warnings for humans.
- → Informing security experts about indecisive results.
- → Store information for later analyses, especially for automatic decisions.

⇒ Threat state monitor

- → Quick overview of global threat state.
- → Influences assignment of priorities by EWS Coordinator.
- → Influences threat assesment and prediction.
- → Influenced by threat assesment and prediction.

DAI-Labor

A|O|T 7

Interaction between agents

- **⇒** Sensors have only a local view of events.
- ⇒ On a local scope, e.g. within one critical infrastructure network, sensors may cooperate with each other.
- ⇒ Sensors must cooperate with an A-EWS Center.
- ⇒ Sensor agents act as translators for local and application specific formats and the A-EWS ontologies and protocols.
- ⇒ Agents should be capable of using different communication techniques, e.g. they use SMS for alerts, when Internet connections have failed.

DAI-Labor

Example scenario

DAI-Labor

Important issues and conclusion

- ⇒ Described A-EWS architecture is possible, but requires that the following points are addressed:
 - → Detection of unknown attacks.
 - → Flexible common ontologies and communication protocols.
 - → Sensor agents must also enforce a local and global A-EWS policy.
 - → Which deals with privacy aspects of collected personal information.
 - → Which deals with secrecy aspects of collected infrastructure (company) data.
 - Scalability and data management aspects of the A-EWS.
 - → Quality of generated warnings and alerts.
 - → Up-to-dateness of detectable risks and threats.
 - → Intelligent combination of IT related events and non-IT related events (e.g. burglar or fire alarms).
 - Cost effective sensor deployment.

The End

Questions?